CONTENTS:

<table>
<thead>
<tr>
<th>Introduction &amp; User List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Overview</td>
</tr>
<tr>
<td>Vertical Process Pumps Series 600</td>
</tr>
<tr>
<td>Vertical Sewage Pumps Series 700</td>
</tr>
<tr>
<td>Vertical Sump Pumps Series 800</td>
</tr>
<tr>
<td>Vertical Vortex Pumps Series 900</td>
</tr>
<tr>
<td>Vertical Cantilever Pumps Series 1100 and 1200</td>
</tr>
<tr>
<td>Horizontal End Suction Pumps-Centrifugal Series 1300 and 1400</td>
</tr>
<tr>
<td>Horizontal End Suction Pumps-Vortex Series 1500 and 1600</td>
</tr>
<tr>
<td>Horizontal Self-priming Pumps-Centrifugal Series 2100</td>
</tr>
<tr>
<td>Engineering Sample Specifications</td>
</tr>
</tbody>
</table>
Model 1312 horizontal motor-mounted end suction pumps are designed for use with NEMA standard C-face electric motors. This rugged and dependable pump will provide many years of dependable service.
1. Motor Support and Seal Housing
   one-piece casting

2. Impeller
   semi-open design with balance hub. Secured to shaft by taper and threads.

3. Mechanical Seal
   Self-aligning design

4. Casing
   Back pull-out design. Discharge orientation options.

5. Shaft
   316 stainless steel material. Standard with taper and threads.

6. Support Foot Adaptor (optional)

7. C-Face Motor
   Standard

CUSTOMER Benefits

- Assures positive alignment of motor and pump with registered fits
- High quality - smooth performance
- Easily removed
- No adjustment required
- Rotating element easily removed - casing remains in piping
- Casing may be rotated in 90° increments to accommodate various piping requirements
- Long lasting and replacable
- Bolt-on type design for versatility
- Readily available
Series 1300 / Model 1312 Size 1 1/2 X 1 X 6
1750 RPM

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT _______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________

Series 1300 / Model 1312 Size 2 X 1 1/2 X 6
1750 RPM

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT _______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________
## Dimensions

### Size 1½ x 1 x 6

<table>
<thead>
<tr>
<th>RPM</th>
<th>HP</th>
<th>PUMP FOOT</th>
<th>SUC</th>
<th>DIS</th>
<th>A</th>
<th>AG</th>
<th>B</th>
<th>CP</th>
<th>E</th>
<th>2F</th>
<th>DF</th>
<th>H*</th>
<th>HD</th>
<th>ML</th>
<th>PL</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1750</td>
<td>⅛</td>
<td>NOT REQ'D</td>
<td>1</td>
<td>NPT</td>
<td>6.50</td>
<td>9.29</td>
<td>4.25</td>
<td>15.17</td>
<td>2.44</td>
<td>3.00</td>
<td>NA</td>
<td>5.88</td>
<td>8.75</td>
<td>5.50</td>
<td>3.75</td>
<td>1.25</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>⅛</td>
<td>NOT REQ'D</td>
<td>1</td>
<td>NPT</td>
<td>6.50</td>
<td>9.29</td>
<td>4.25</td>
<td>15.17</td>
<td>2.44</td>
<td>3.00</td>
<td>NA</td>
<td>5.88</td>
<td>8.75</td>
<td>5.50</td>
<td>3.75</td>
<td>1.25</td>
<td>3.50</td>
<td></td>
</tr>
</tbody>
</table>

### Size 2 x 1½ x 6

<table>
<thead>
<tr>
<th>RPM</th>
<th>HP</th>
<th>PUMP FOOT</th>
<th>SUC</th>
<th>DIS</th>
<th>A</th>
<th>AG</th>
<th>B</th>
<th>CP</th>
<th>E</th>
<th>2F</th>
<th>DF</th>
<th>H*</th>
<th>HD</th>
<th>ML</th>
<th>PL</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1750</td>
<td>⅛</td>
<td>NOT REQ'D</td>
<td>1</td>
<td>NPT</td>
<td>6.50</td>
<td>9.29</td>
<td>4.25</td>
<td>15.67</td>
<td>2.44</td>
<td>3.00</td>
<td>NA</td>
<td>6.38</td>
<td>9.25</td>
<td>6.00</td>
<td>3.88</td>
<td>1.63</td>
<td>3.63</td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>⅛</td>
<td>NOT REQ'D</td>
<td>1</td>
<td>NPT</td>
<td>6.50</td>
<td>9.29</td>
<td>4.25</td>
<td>15.67</td>
<td>2.44</td>
<td>3.00</td>
<td>NA</td>
<td>6.38</td>
<td>9.25</td>
<td>6.00</td>
<td>3.88</td>
<td>1.63</td>
<td>3.63</td>
<td></td>
</tr>
</tbody>
</table>

---

### Notes

- Dimensions are for TEFC motors only.
- *Optional pump foot shown for motors less feet*
- Not for construction unless certified, some dimensions may vary ± 1/2". Pump Construction:

---

### Table

<table>
<thead>
<tr>
<th>CUSTOMER</th>
<th>CUSTOMER NO.</th>
<th>PROJECT</th>
<th>SERIAL NO.</th>
<th>ENGINEER</th>
<th>LOCATION</th>
<th>CONTRACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUMP Model</td>
<td>Size</td>
<td>Curve No.</td>
<td>GPM Head</td>
<td>SP. GR. @ Temp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>MOTOR Mfr.</td>
<td>HP</td>
<td>RPM</td>
<td>Volt-Phase-Cycle</td>
<td>Frame ENC.</td>
<td>Furnished by</td>
</tr>
<tr>
<td>DATA</td>
<td>Shop Order</td>
<td>Certified by</td>
<td>Date</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Series 1300 horizontal close-coupled end suction pumps are designed for use with any NEMA Standard JP Shaft Motor. VERTIFLO’s close-coupled pumps are designed with back pull-out feature. This important feature allows for easy inspection or service/maintenance (if ever needed) without disturbing the piping to the pump: An important cost saving feature. Packing or various mechanical seal arrangements are available as standard options of this rugged, dependable product.
1. Mounting Bracket
Rugged cast iron design which assures a solid, dependable pump installation and operation. Three brackets fit all pump sizes.

2. Motor
NEMA standard JP shaft extension allows for easy interchangability to packing, standard mechanical seal or optional single or double mechanical seals of various designs and materials of construction.

3. Shaft Sealing
Packed arrangement utilizes a 2-piece split gland, slinger, Teflon® split lantern ring and 5-ring packing set. Grease lubrication is standard with product or water flush available. Wide choice of John Crane and Durametallic mechanical seals of various configurations and materials are optional.

4. Shaft Sleeve
316 stainless steel is standard. Positively driven and gasketed, protecting motor shaft from liquid being pumped.

5. Impeller
Semi-open design which accommodates passage of solids or fines. All impellers have holes near the impeller hub which reduce thrust load and pressure in the packing or seal area. Wiping vanes reduce axial loading and prevent dirt from entering the sealing area. Impeller is keyed to shaft, and an impeller locking screw assures positive attachment.

6. Casing
High efficiency volute design. 4X3X10 and larger sizes are double volute, containing a splitter, which reduces bearing loading and shaft deflection; thus extending bearing and packing or mechanical seal life. All suction and discharge openings are flanged for installation ease and integrity.

7. Back Pull-Out
All pumps* are designed with back pull-out feature which allows for removal of all pump rotating components without disturbing the piping connections.

*except size 2 X 1 1/2 X 12
Standard
• All iron construction
• 316 stainless steel shaft sleeve
• Semi-open impeller
• Back pull-out design
• Packed stuffing box or mechanical seal
• Flanged suction and discharge on all pump sizes
• NEMA standard JP shaft motor

Options
• 316 stainless steel impeller
• All 316 stainless stee, Alloy 20, CD4MC
• Single or double mechanical seal (various materials)
• Product or fresh water flush to packing or mechanical seal
• Teflon® packing (standard in s.s. and alloy units)
• ODP, TEFC

<table>
<thead>
<tr>
<th>Design Details</th>
<th>Model 1320</th>
<th>Model 1326</th>
<th>Model 1334</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation from driver end</td>
<td>CW</td>
<td>CW</td>
<td>CW</td>
</tr>
<tr>
<td>Outside diameter of shaft sleeve</td>
<td>1.250</td>
<td>1.625</td>
<td>2.125</td>
</tr>
<tr>
<td>Shaft diameter at impeller</td>
<td>0.875</td>
<td>1.250</td>
<td>1.750</td>
</tr>
</tbody>
</table>
PUMP COMPANY Performance Curves

**Curve PV-1525**

Series 1300 / 1400  
Size 3 X 2 1/2 X 7  
RPM 1750  
Max Sphere 1

**Curve RV-1525**

Series 1300 / 1400  
Size 3 X 2 1/2 X 7  
RPM 1150  
Max Sphere 1

Performance at Casing Discharge Flange  
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________

PROJECT ______________________________________________________________________________

ENGINEER ______________________________________________________________________________

CONTRACTOR ___________________________________________________________________________

CONDITIONS: _______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________
Series 1300 / 1400
Size 1 1/2 X 1 X 8
RPM 1750
Max Sphere 1/4

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA _________

Series 1300 / 1400
Size 1 1/2 X 1 X 8
RPM 1150
Max Sphere 1/4

Performance Curves
**Series 1300 / 1400**

**Size** 1 1/2 X 1 1/4 X 8

**RPM** 1750

**Max Sphere** 5/16

---

**Performance Curves**

**Curve AS-1612**

- **Series**: 1300 / 1400
- **Size**: 1 1/2 X 1 1/4 X 8
- **RPM**: 1750
- **Max Sphere**: 5/16

---

**Curve BS-1612**

- **Series**: 1300 / 1400
- **Size**: 1 1/2 X 1 1/4 X 8
- **RPM**: 1150
- **Max Sphere**: 5/16

---

**Performance at Casing Discharge Flange**

Curves show performance with liquid having specific gravity 1.0 viscosity • 30 SSU

**CUSTOMER ____________________________________________________**
**CUSTOMER NO. __________**

**PROJECT ______________________________________________________________________________**

**ENGINEER ______________________________________________________________________________**

**CONTRACTOR ___________________________________________________________________________**

**CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA _________**
Series 1300 / 1400
Size 2 X 1 1/2 X 8
RPM 1750
Max Sphere 7/16

Curve BS-1615

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA ________

Curve CS-1615

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA ________
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER ___________________________________________ CUSTOMER NO. __________
PROJECT _______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: GPM TDH HP EFF% IMP. DIA __________

Series 1300 / 1400
Size 3 X 2 X 8
RPM 1750
Max Sphere 11/16

Series 1300 / 1400
Size 3 X 2 X 8
RPM 1150
Max Sphere 11/16
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: ___________ GPM ___________ TDH ___________ HP ___________ EFF% ___________ IMP. DIA ___________
Series 1300 / 1400

Curve SM-1915
- Size 2 X 1 1/2 X 10
- RPM 1750
- Max Sphere 7/16

Curve TM-1915
- Size 2 X 1 1/2 X 10
- RPM 1150
- Max Sphere 7/16

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________ CUSTOMER NO. __________
PROJECT __________________________________________________________________________
ENGINEER __________________________________________________________________________
CONTRACTOR _________________________________________________________________________
CONDITIONS: GPM TDH HP EFF% IMP. DIA __________
Curve JM-1720

Series 1300 / 1400
Size 3 X 2 X 10
RPM 1750
Max Sphere 11/16

Performance Curves
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: GPM TDH HP EFF% IMP. DIA __________

Curve KM-1720

Series 1300 / 1400
Size 3 X 2 X 10
RPM 1150
Max Sphere 11/16
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: GPM TDH HP EFF% IMP. DIA
Curve UM-1750

Series 1300 / 1400
Size 6 X 5 X 10
RPM 1750
Max Sphere 1

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER _______________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: GPM TDH HP EFF% IMP. DIA ________________

Curve VM-1750

Series 1300 / 1400
Size 6 X 5 X 10
RPM 1150
Max Sphere 1

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER _______________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: GPM TDH HP EFF% IMP. DIA ________________
PUMP COMPANY Performance Curves

Curve SM-1750

Series 1300 / 1400
Size 6 X 5 X 10A
RPM 1750
Max Sphere 1 1/2

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________

Curve SM-1850

Series 1300 / 1400
Size 6 X 5 X 10A
RPM 1150
Max Sphere 1 1/2
PUMP COMPANY Performance Curves

Curve TM-1760

Series 1300 / 1400
Size 6 X 6 X 10
RPM 1750
Max Sphere 1 1/8

Curve UM-1760

Series 1300 / 1400
Size 6 X 6 X 10
RPM 1150
Max Sphere 1 1/8

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: GPM TDH HP EFF% IMP. DIA ________________

Series 1300 End Suction Pumps - 21
Series 1300 / 1400
Size 6 X 6 X 10A
RPM 1750
Max Sphere 1 9/16

Series 1300 / 1400
Size 6 X 6 X 10A
RPM 1150
Max Sphere 1 9/16

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: ___________ GPM ___________ TDH ___________ HP ___________ EFF% ___________ IMP. DIA ___________
Series 1300 / 1400
Size 2 X 1 1/2 X 12
RPM 1750
Max Sphere 7/16

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ________________________________ CUSTOMER NO. ______________
PROJECT ____________________________________________________________________________
ENGINEER ____________________________________________________________________________
CONTRACTOR __________________________________________________________________________
CONDITIONS: GPM TDH HP EFF% IMP. DIA ___________

Series 1300 End Suction Pumps - 23
Performance Curves

Curve KL-1916

- Series: 1300/1400
- Size: 3 X 2 X 12
- RPM: 1750
- Max Sphere: 3/4

Gallons Per Minute

Head in Feet

Curve LL-1916

- Series: 1300/1400
- Size: 3 X 2 X 12
- RPM: 1150
- Max Sphere: 3/4

Gallons Per Minute

Head in Feet

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ___________________________________________ CUSTOMER NO. __________

PROJECT ______________________________________________________________________________

ENGINEER ______________________________________________________________________________

CONTRACTOR ___________________________________________________________________________

CONDITIONS: GPM TDH HP EFF% IMP. DIA ______
PUMP COMPANY Performance Curves

Curve KL-1917

Series 1300 / 1400
Size 4 X 3 X 12
RPM 1750
Max Sphere 1 1/4

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: GPM TDH HP EFF% IMP. DIA
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: _______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________
Series 1300 / 1400
Size 6 X 4 X 12A
RPM 1750
Max Sphere 1 1/8

Performance Curves

Curve 6412A4

Curve 6412A6

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA _________

Series 1300 End Suction Pumps - 27
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER ___________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: _______ GPM _______ TDH _______ HP _______ EFF% _______ IMP. DIA _______
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA _________

Series 1300 / 1400
Size 8 X 8 X 12
RPM 1750
Max Sphere 1 1/2

Series 1300 / 1400
Size 8 X 8 X 12
RPM 1150
Max Sphere 1 1/2
Series 1300 / 1400
Size 10 X 10 X 12
RPM 1750
Max Sphere 1 1/2

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. ________
PROJECT _______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: _______GPM_________TDH_________HP__________EFF%__________IMP. DIA _________
Series 1300 / 1400
Size 3 X 2 1/2 X 7
RPM 3500
Max Sphere 1

Series 1300 / 1400
Size 1 1/2 X 1 X 8
RPM 3500
Max Sphere 1/4

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ________________________________________________________________________________
ENGINEER _______________________________________________________________________________
CONTRACTOR _____________________________________________________________________________
CONDITIONS: __________ GPM __________ TDH __________ HP __________ EFF% __________ IMP. DIA __________
Series 1300 / 1400  
Size 1 1/2 X 1 1/4 X 8  
RPM 3500  
Max Sphere 5/16  

Performance Curves  

Performance at Casing Discharge Flange  
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU  

CUSTOMER ____________________________________________________ CUSTOMER NO. __________  
PROJECT ______________________________________________________________________________  
ENGINEER ______________________________________________________________________________  
CONTRACTOR ___________________________________________________________________________  
CONDITIONS: GPM TDH HP EFF% IMP. DIA __________
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: GPM TDH HP EFF% IMP. DIA __________
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ____________________________________________________ CUSTOMER NO. __________
PROJECT ______________________________________________________________________________
ENGINEER ______________________________________________________________________________
CONTRACTOR ___________________________________________________________________________
CONDITIONS: GPM TDH HP EFF% IMP. DIA __________

Series 1300 / 1400
Size 3 X 2 X 10
RPM 3500
Max Sphere 11/16

Series 1300 / 1400
Size 4 X 3 X 10
RPM 3500
Max Sphere 1 3/16
1300 Series - 8" Line

**MOTOR DATA**

<table>
<thead>
<tr>
<th>FRAME</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>AG</th>
</tr>
</thead>
<tbody>
<tr>
<td>143 JP</td>
<td>6¹/₂</td>
<td>6</td>
<td>3¹/₂</td>
<td>2¹/₄</td>
<td>2</td>
<td>1¹/₄</td>
<td>1¹/₄</td>
<td>9¹/₄</td>
</tr>
<tr>
<td>145 JP</td>
<td>6¹/₂</td>
<td>6</td>
<td>3¹/₂</td>
<td>2¹/₄</td>
<td>2</td>
<td>1¹/₄</td>
<td>1¹/₄</td>
<td>9¹/₄</td>
</tr>
<tr>
<td>182 JP</td>
<td>8</td>
<td>6¹/₂</td>
<td>4¹/₂</td>
<td>3¹/₄</td>
<td>2¹/₄</td>
<td>9¹/₄</td>
<td>9¹/₄</td>
<td>13¹/₄</td>
</tr>
<tr>
<td>184 JP</td>
<td>8</td>
<td>6¹/₂</td>
<td>4¹/₂</td>
<td>3¹/₄</td>
<td>2¹/₄</td>
<td>9¹/₄</td>
<td>9¹/₄</td>
<td>13¹/₄</td>
</tr>
<tr>
<td>213 JP</td>
<td>9¹/₂</td>
<td>7</td>
<td>5¹/₂</td>
<td>4¹/₄</td>
<td>2¹/₄</td>
<td>9¹/₄</td>
<td>9¹/₄</td>
<td>15¹/₄</td>
</tr>
<tr>
<td>215 JP</td>
<td>9¹/₂</td>
<td>8</td>
<td>5¹/₂</td>
<td>4¹/₄</td>
<td>3¹/₄</td>
<td>9¹/₄</td>
<td>9¹/₄</td>
<td>17</td>
</tr>
<tr>
<td>254 JP</td>
<td>11¹/₂</td>
<td>10¹/₁₆</td>
<td>6</td>
<td>4¹/₄</td>
<td>9¹/₄</td>
<td>20¹/₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256 JP</td>
<td>11¹/₂</td>
<td>12¹/₄</td>
<td>6¹/₂</td>
<td>5</td>
<td>5¹/₄</td>
<td>9¹/₄</td>
<td>21¹/₂</td>
<td></td>
</tr>
<tr>
<td>284 JP</td>
<td>12¹/₄</td>
<td>12¹/₂</td>
<td>7</td>
<td>5¹/₂</td>
<td>4¹/₄</td>
<td>9¹/₄</td>
<td>22¹/₂</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions Based on TEFC, JP Frame Motors.

Not for construction unless certified, some dimensions may vary ± 1/2". Pump Construction:

CUSTOMER ___________________________________________ CUSTOMER NO. _______________________
PROJECT ______________________________________________ SERIAL NO. __________________________
ENGINEER _____________________________________________ LOCATION ___________________________
CONTRACTOR ___________________________________________

PUMP DATA

Model | Size | Curve No. | GPM | Head | SP. GR.@Temp. |
--- | --- | --- | --- | --- | --- |

MOTOR DATA

Mfgr. | HP | RPM | Volt-Phase-Cycle | Frame ENC. |
--- | --- | --- | --- | --- |

Shop Order ___________________ Certified by ____________ Date ________________________
<table>
<thead>
<tr>
<th>LIQUID END</th>
<th>PUMP MODEL</th>
<th>MOTOR FRAME</th>
<th>SUCTION FLANGE</th>
<th>DISCHARGE FLANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 x 2 ½ x 7</td>
<td>1320 1326</td>
<td>143 JP 145 JP 182 JP 184 JP</td>
<td>FLG. DIA. # OF HOLES TAP B.C. FLG. DIA. # OF HOLES</td>
<td>FLG. DIA. # OF HOLES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 7 ½ 4 — ½ 11</td>
<td>6 2 ½ 7 4 ¾ 5</td>
</tr>
<tr>
<td>1 ½ x 1 x 8</td>
<td>1320 1326</td>
<td>143 JP 145 JP 182 JP 184 JP</td>
<td>FLG. DIA. # OF HOLES TAP B.C. FLG. DIA. # OF HOLES</td>
<td>FLG. DIA. # OF HOLES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 ½ 5 4 — ½ 13</td>
<td>3 ½ 1 ¼ 4 ¾ 3</td>
</tr>
<tr>
<td>1 ½ x 1 ½ x 8</td>
<td>1320 1326</td>
<td>143 JP 145 JP 182 JP 184 JP</td>
<td>FLG. DIA. # OF HOLES TAP B.C. FLG. DIA. # OF HOLES</td>
<td>FLG. DIA. # OF HOLES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 ½ 5 4 — ½ 13</td>
<td>3 ½ 1 ¼ 4 ¾ 3</td>
</tr>
<tr>
<td>2 x 1 ½ x 8</td>
<td>1320 1326</td>
<td>143 JP 145 JP 182 JP 184 JP</td>
<td>FLG. DIA. # OF HOLES TAP B.C. FLG. DIA. # OF HOLES</td>
<td>FLG. DIA. # OF HOLES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 6 4 — ½ 11</td>
<td>4 ½ 1 ½ 5 4 ¾ 3</td>
</tr>
<tr>
<td>3 x 2 x 8</td>
<td>1320 1326</td>
<td>143 JP 145 JP 182 JP 184 JP</td>
<td>FLG. DIA. # OF HOLES TAP B.C. FLG. DIA. # OF HOLES</td>
<td>FLG. DIA. # OF HOLES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 ½ 7 4 — ½ 11</td>
<td>5 ½ 2 6 4 ¾ 4</td>
</tr>
<tr>
<td>4 x 3 x 8</td>
<td>1320 1326</td>
<td>145 JP 182 JP 184 JP</td>
<td>FLG. DIA. # OF HOLES TAP B.C. FLG. DIA. # OF HOLES</td>
<td>FLG. DIA. # OF HOLES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 9 8 — ½ 11</td>
<td>7 ½ 3 7 ½ 4 ¾ 6 11</td>
</tr>
<tr>
<td>5 x 4 x 8</td>
<td>1320 1326</td>
<td>145 JP 182 JP 184 JP</td>
<td>FLG. DIA. # OF HOLES TAP B.C. FLG. DIA. # OF HOLES</td>
<td>FLG. DIA. # OF HOLES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 10 8 — ½ 10</td>
<td>8 ½ 4 9 8 ¾ 7</td>
</tr>
</tbody>
</table>

Series 1300 End Suction Pumps - 36
1300 Series - 10/12" Line

**MOTOR DATA**

<table>
<thead>
<tr>
<th>FRAME</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>AG</th>
</tr>
</thead>
<tbody>
<tr>
<td>143 JP</td>
<td>6½</td>
<td>6</td>
<td>3½</td>
<td>2½</td>
<td>2</td>
<td>½</td>
<td>½</td>
<td>9½</td>
</tr>
<tr>
<td>145 JP</td>
<td>6½</td>
<td>6</td>
<td>3½</td>
<td>2½</td>
<td>2½</td>
<td>½</td>
<td>½</td>
<td>9½</td>
</tr>
<tr>
<td>182 JP</td>
<td>8½</td>
<td>6</td>
<td>4½</td>
<td>3½</td>
<td>3½</td>
<td>½</td>
<td>½</td>
<td>13½</td>
</tr>
<tr>
<td>184 JP</td>
<td>8½</td>
<td>6</td>
<td>4½</td>
<td>3½</td>
<td>3½</td>
<td>½</td>
<td>½</td>
<td>13½</td>
</tr>
<tr>
<td>213 JP</td>
<td>9½</td>
<td>7½</td>
<td>5½</td>
<td>4½</td>
<td>4½</td>
<td>½</td>
<td>½</td>
<td>15½</td>
</tr>
<tr>
<td>215 JP</td>
<td>9½</td>
<td>8½</td>
<td>5½</td>
<td>4½</td>
<td>4½</td>
<td>½</td>
<td>½</td>
<td>15½</td>
</tr>
<tr>
<td>225 JP</td>
<td>11½</td>
<td>10½</td>
<td>6½</td>
<td>5</td>
<td>4½</td>
<td>½</td>
<td>½</td>
<td>20½</td>
</tr>
<tr>
<td>255 JP</td>
<td>11½</td>
<td>12½</td>
<td>6½</td>
<td>5</td>
<td>5</td>
<td>½</td>
<td>½</td>
<td>21½</td>
</tr>
<tr>
<td>284 JP</td>
<td>12½</td>
<td>12½</td>
<td>7</td>
<td>5½</td>
<td>4½</td>
<td>½</td>
<td>½</td>
<td>22½</td>
</tr>
<tr>
<td>286 JP</td>
<td>12½</td>
<td>13½</td>
<td>7</td>
<td>5½</td>
<td>4½</td>
<td>½</td>
<td>½</td>
<td>23½</td>
</tr>
<tr>
<td>324 JP</td>
<td>15½</td>
<td>13½</td>
<td>8</td>
<td>6½</td>
<td>5½</td>
<td>1½</td>
<td>½</td>
<td>24½</td>
</tr>
<tr>
<td>326 JP</td>
<td>15½</td>
<td>16</td>
<td>8</td>
<td>6½</td>
<td>6</td>
<td>1½</td>
<td>½</td>
<td>26½</td>
</tr>
<tr>
<td>364 JP</td>
<td>17½</td>
<td>14½</td>
<td>9</td>
<td>7</td>
<td>5½</td>
<td>1½</td>
<td>½</td>
<td>28½</td>
</tr>
</tbody>
</table>

Dimensions Based on TEFC, JP Frame Motors.

Not for construction unless certified, some dimensions may vary ±1/2". Pump Construction:
<table>
<thead>
<tr>
<th>LIQUID END</th>
<th>PUMP MODEL</th>
<th>MOTOR FRAME</th>
<th>SUCTION FLANGE</th>
<th>DISCHARGE FLANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x1½x10</td>
<td>1320</td>
<td>145 JP</td>
<td>2 6 4 — % 11</td>
<td>% 11 % 11</td>
</tr>
<tr>
<td></td>
<td>1320</td>
<td>182 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1320</td>
<td>184 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1326</td>
<td>213 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1326</td>
<td>215 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1326</td>
<td>254 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1326</td>
<td>256 JP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 3x2x10    | 1320       | 145 JP      | 3 7½ 4 — % 11  | % 11 % 11        |
|           | 1320       | 182 JP      |                |                  |
|           | 1320       | 184 JP      |                |                  |
|           | 1326       | 213 JP      |                |                  |
|           | 1326       | 215 JP      |                |                  |
|           | 1326       | 254 JP      |                |                  |
|           | 1326       | 256 JP      |                |                  |
|           | 1326       | 284 JP      |                |                  |

| 4x3x10    | 1320       | 145 JP      | 4 9 8 — % 11   | % 11 % 11        |
|           | 1320       | 182 JP      |                |                  |
|           | 1320       | 184 JP      |                |                  |
|           | 1326       | 213 JP      |                |                  |
|           | 1326       | 215 JP      |                |                  |
|           | 1326       | 254 JP      |                |                  |
|           | 1326       | 256 JP      |                |                  |
|           | 1326       | 284 JP      |                |                  |

| 5x4x10    | 1320       | 184 JP      | 5 10 8 — % 10  | % 10 % 10        |
|           | 1320       | 213 JP      |                |                  |
|           | 1320       | 215 JP      |                |                  |
|           | 1320       | 254 JP      |                |                  |
|           | 1320       | 256 JP      |                |                  |
|           | 1326       | 213 JP      |                |                  |
|           | 1326       | 215 JP      |                |                  |
|           | 1326       | 254 JP      |                |                  |
|           | 1326       | 256 JP      |                |                  |
|           | 1326       | 284 JP      |                |                  |

| 6x5x10    | 1320       | 145 JP      | 6 11 8 — % 10  | % 10 % 10        |
|           | 1320       | 182 JP      |                |                  |
|           | 1320       | 213 JP      |                |                  |
|           | 1320       | 215 JP      |                |                  |
|           | 1320       | 254 JP      |                |                  |
|           | 1320       | 256 JP      |                |                  |
|           | 1320       | 284 JP      |                |                  |
| 6x5x10    | 1320       | 213 JP      |                |                  |
|           | 1320       | 215 JP      |                |                  |
|           | 1320       | 254 JP      |                |                  |
|           | 1320       | 256 JP      |                |                  |
|           | 1320       | 284 JP      |                |                  |

| 2x1½x12   | 1320       | 184 JP      | 2 6 4 — ⅜      | ⅜ ⅜ ⅜ ⅜         |
|           | 1320       | 213 JP      |                |                  |
|           | 1320       | 215 JP      |                |                  |
|           | 1320       | 254 JP      |                |                  |
|           | 1320       | 256 JP      |                |                  |
|           | 1326       | 213 JP      |                |                  |
|           | 1326       | 215 JP      |                |                  |
|           | 1326       | 254 JP      |                |                  |
|           | 1326       | 256 JP      |                |                  |

<table>
<thead>
<tr>
<th>LIQUID END</th>
<th>PUMP MODEL</th>
<th>MOTOR FRAME</th>
<th>SUCTION FLANGE</th>
<th>DISCHARGE FLANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x1½x10</td>
<td>1320</td>
<td>145 JP</td>
<td>2 6 4 — % 11</td>
<td>% 11 % 11</td>
</tr>
<tr>
<td>1320</td>
<td>182 JP</td>
<td>213 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>184 JP</td>
<td>215 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>254 JP</td>
<td>256 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x1½x10</td>
<td>1320</td>
<td>145 JP</td>
<td>2 6 4 — ⅜</td>
<td>⅜ ⅜ ⅜ ⅜</td>
</tr>
<tr>
<td>1320</td>
<td>182 JP</td>
<td>213 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>184 JP</td>
<td>215 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>254 JP</td>
<td>256 JP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIQUID END</th>
<th>PUMP MODEL</th>
<th>MOTOR FRAME</th>
<th>SUCTION FLANGE</th>
<th>DISCHARGE FLANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x1½x10</td>
<td>1320</td>
<td>145 JP</td>
<td>2 6 4 — % 11</td>
<td>% 11 % 11</td>
</tr>
<tr>
<td>1320</td>
<td>182 JP</td>
<td>213 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>184 JP</td>
<td>215 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>254 JP</td>
<td>256 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x1½x10</td>
<td>1320</td>
<td>145 JP</td>
<td>2 6 4 — ⅜</td>
<td>⅜ ⅜ ⅜ ⅜</td>
</tr>
<tr>
<td>1320</td>
<td>182 JP</td>
<td>213 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>184 JP</td>
<td>215 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>254 JP</td>
<td>256 JP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIQUID END</th>
<th>PUMP MODEL</th>
<th>MOTOR FRAME</th>
<th>SUCTION FLANGE</th>
<th>DISCHARGE FLANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x1½x10</td>
<td>1320</td>
<td>145 JP</td>
<td>2 6 4 — % 11</td>
<td>% 11 % 11</td>
</tr>
<tr>
<td>1320</td>
<td>182 JP</td>
<td>213 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>184 JP</td>
<td>215 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>254 JP</td>
<td>256 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x1½x10</td>
<td>1320</td>
<td>145 JP</td>
<td>2 6 4 — ⅜</td>
<td>⅜ ⅜ ⅜ ⅜</td>
</tr>
<tr>
<td>1320</td>
<td>182 JP</td>
<td>213 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>184 JP</td>
<td>215 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1320</td>
<td>254 JP</td>
<td>256 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIQUID END</td>
<td>PUMP MODEL</td>
<td>MOTOR FRAME</td>
<td>SUCTION FLANGE</td>
<td>DISCHARGE FLANGE</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FLG. SIZE</td>
<td>DIA. FLG.</td>
</tr>
<tr>
<td>3x2x12</td>
<td>1326</td>
<td>213 JP</td>
<td>3</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>215 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>254 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>256 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>284 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4x3x12</td>
<td>1326</td>
<td>215 JP</td>
<td>4</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>254 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>256 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>284 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>286 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6x4x12</td>
<td>1326</td>
<td>254 JP</td>
<td>6</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>256 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>284 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>286 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>324 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>326 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1334</td>
<td>364 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6x6x12</td>
<td>1326</td>
<td>256 JP</td>
<td>6</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>284 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>286 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>324 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>326 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1334</td>
<td>364 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8x8x12</td>
<td>1326</td>
<td>256 JP</td>
<td>8</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>284 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>286 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>324 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>326 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1334</td>
<td>364 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10x10x12</td>
<td>1326</td>
<td>256 JP</td>
<td>10</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>284 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>286 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>324 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>326 JP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1334</td>
<td>364 JP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimension DF will be larger on frame 364 and larger.