CONTENTS:

Introduction & User List

Product Overview

Vertical Process Pumps Series 600

Vertical Sewage Pumps Series 700

Vertical Sump Pumps Series 800

Vertical Vortex Pumps Series 900

Vertical Cantilever Pumps Series 1100 and 1200

Horizontal End Suction Pumps-Centrifugal Series 1300 and 1400

Horizontal End Suction Pumps-Vortex Series 1500 and 1600

Horizontal Self-priming Pumps- Centrifugal Series 2100

Engineering Sample Specifications
SERIES 600, MODELS 629 & 636
Quality Design Features Assure Long, Trouble-Free Service

WIDE RANGE OF APPLICATIONS:
• Industrial Spray Washer
• Pickling / Bonderizing
• Spray Booths
• Coolant Systems
• Filtration Systems
• Pollution Control
• E-Coat Paint Systems

CAPABILITIES:
• Capacities to 3000 GPM
• Heads to 230 Feet
• Temperature to 180° F
• Column Extensions of 12", 15" & 21"
• Construction: Cast Iron, 316 Stainless Steel Fitted, 316 Stainless Steel, Alloy 20

CONSTRUCTION:

Standard
- All iron construction
- Stress-Proof alloy steel shaft
- External impeller adjustment
- Cartridge type thrust bearing housing and cap
- Double row thrust bearing
- Semi-Open impeller with balancing ring and wiping vanes
- 12" flanged column extension
- Steel cover plate
- Schedule 40 discharge pipe
- Cast iron motor support
- Flexible coupling

Options
- Stainless steel fitted, All stainless steel or Alloy 20 construction
- Pump down feature
- Suction piping
- Column extension available for 15" or 21" extensions
- Oversize cover plates
- Fabricated steel chairs for "T" or "U" frame foot mounted motors

Shaft Sizes
Model Number 629............2 1/4"
Model Number 636............2 1/2"
1. **Motor Support**
 Assures positive alignment of motor and pump shaft with register fit. Normal thrust, vertical NEMA C face motor standard. Fabricated steel chair mount is an option.

2. **External Impeller Adjustment**
 Locking jack screws provide impeller adjustment without dismantling pump or piping.

3. **Bearings**
 Grease lubricated, heavy-duty ball bearings. Double row thrust bearing standard.

4. **Power Frame**
 Heavy duty cast iron, line bored and machined to assure correct alignment of rotating element.

5. **Column Closure**
 Replaceable lip seals prevent moisture and dirt from entering lower bearing.

6. **Cover Plate**
 Designed for specific unit. Carbon steel standard, alloy plates optional.

7. **Positive Machine Fits**
 Machined registered fits of column, power frame, throttle housing and casing.

8. **Column Pipe**
 Schedule 40 steel pipe with welded flanges.

9. **Shaft**
 Accurately machined, stress-proof steel assures minimum deflection.

10. **Throttle Bushing**
 Register fit assures positive alignment between column and casing. Throttle bushing restricts flow of liquid entering column.

11. **Impeller**
 Semi-open design with balancing ring and wiping vanes for wide range of applications. Secured to shaft by taper fit with woodruff key, castellated nut and cotter pin.

12. **Casing**
 Flanged suction and discharge. Double volute design on all 4 X 3 X 10 and larger sizes.

13. **Discharge Pipe**
 1" - 2 1/2" threaded; 3" and larger flanged.
Series 600 Process Pumps - 3

PUMP COMPANY Performance Curves

Curve PV-1525

Series 600
Size 3 X 2 1/2 X 7
RPM 1750
Max Sphere 1

Performance Curves
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS: ______GPM_________TDH_________HP__________EFF%__________IMP. DIA _________

Curve RV-1525

Series 600
Size 3 X 2 1/2 X 7
RPM 1150
Max Sphere 1

Performance at Casing Discharge Flange
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________
Curve AS-1612

Series 600
Size 1 1/2 X 1 1/4 X 8
RPM 1750
Max Sphere 5/16

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS: _______ GPM _______ TDH _______ HP _______ EFF% _______ IMP. DIA __________

Curve BS-1612

Series 600
Size 1 1/2 X 1 1/4 X 8
RPM 1150
Max Sphere 5/16
Series 600 Process Pumps - 6

PUMP COMPANY

Curve BS-1615

Series 600
Size 2 X 1 1/2 X 8
RPM 1750
Max Sphere 7/16

Curve CS-1615

Series 600
Size 2 X 1 1/2 X 8
RPM 1150
Max Sphere 7/16

Performance Curves

Performance at Casing Discharge Flange

Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA _________
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________

PROJECT __

ENGINEER __

CONTRACTOR ___

CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA _________
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________

Series 600 Process Pumps - 10
Curve JM-1720

Series 600
Size 3 X 2 X 10
RPM 1750
Max Sphere 11/16

Performance Curves

Curve KM-1720

Series 600
Size 3 X 2 X 10
RPM 1150
Max Sphere 11/16

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS: _____ GPM _____ TDH _____ HP _____ EFF% _____ IMP. DIA __________
Curve SM-1730

Series 600
Size 4 X 3 X 10
RPM 1750
Max Sphere 1 3/16

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA ____________
PUMP COMPANY Performance Curves

Curve UM-1750

Series 600
Size 6 X 5 X 10
RPM 1750
Max Sphere 1

Curve VM-1750

Series 600
Size 6 X 5 X 10
RPM 1150
Max Sphere 1

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ___________________________ CUSTOMER NO. _________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS: _______GPM _______TDH _______HP _______EFF% _______IMP. DIA _______
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU
CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR __
CONDITIONS: ___________ GPM ______TDH ______HP ______EFF% ______IMP. DIA ______

Curve SM-1750
Series 600
Size 6 X 5 X 10A
RPM 1750
Max Sphere 1 1/2

Curve SM-1850
Series 600
Size 6 X 5 X 10A
RPM 1150
Max Sphere 1 1/2
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________
PROJECT ___
ENGINEER __
CONTRACTOR ___
CONDITIONS: __________ GPM __________ TDH __________ HP __________ EFF% __________ IMP. DIA __________
Series 600 Process Pumps - 17

PUMP COMPANY Performance Curves

Curve LM-1760

- **Series**: 600
- **Size**: 6 X 6 X 10A
- **RPM**: 1750
- **Max Sphere**: 1 9/16

Curve LM-1860

- **Series**: 600
- **Size**: 6 X 6 X 10A
- **RPM**: 1150
- **Max Sphere**: 1 9/16

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS: ___________ GPM ___________ TDH ___________ HP ___________ EFF% ___________ IMP. DIA ___________
Series 600 Process Pumps

PUMP COMPANY

Curve KL-1915

Series 600
Size 2 X 1 1/2 X 12
RPM 1750
Max Sphere 7/16

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA ___________
Series 600 Process Pumps - 19

Curve KL-1916

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER _______________________________ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA __________

Curve LL-1916
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS:______GPM_________TDH_________HP__________EFF%__________IMP. DIA _________

Series 600 Process Pumps - 20
Series 600 Process Pumps - 21

PUMP COMPANY Performance Curves

Curve 64124

Series 600
Size 6 X 4 X 12
RPM 1750
Max Sphere 1 1/2

Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________

PROJECT __

ENGINEER __

CONTRACTOR ___

CONDITIONS: GPM TDH HP EFF% IMP. DIA

Curve 64126

Series 600
Size 6 X 4 X 12
RPM 1150
Max Sphere 1 1/2

Series 600 Process Pumps - 21
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________
PROJECT ___
ENGINEER __
CONTRACTOR ___
CONDITIONS: ______ GPM ______ TDH ______ HP ______ EFF% ______ IMP. DIA _______
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER __ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS: GPM TDH HP EFF% IMP. DIA __________

Series 600 Process Pumps - 23
Performance at Casing Discharge Flange
Curves Show Performance with Liquid Having Specific Gravity 1.0 Viscosity • 30 SSU

CUSTOMER ___ CUSTOMER NO. __________
PROJECT __
ENGINEER __
CONTRACTOR ___
CONDITIONS: GPM TDH HP EFF% IMP. DIA _______
624 - TCD Process Pump
"C" Face Motor w/Discharge Pipe

PUMP DATA

<table>
<thead>
<tr>
<th>SIZE</th>
<th>AD</th>
<th>AS</th>
<th>B</th>
<th>D</th>
<th>E</th>
<th>EE</th>
<th>F</th>
<th>H</th>
<th>J</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O₁</th>
<th>O₂</th>
<th>V</th>
<th>TD</th>
<th>VS</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3½×7</td>
<td>2½</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td>13</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>½</td>
<td>6</td>
<td>5</td>
<td>17</td>
<td>14</td>
<td>16</td>
<td>7½</td>
</tr>
<tr>
<td>1½×1×8</td>
<td>½</td>
<td>11</td>
<td>11</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>13</td>
<td>15</td>
<td>6½</td>
</tr>
<tr>
<td>1½×1½×6</td>
<td>½</td>
<td>1½</td>
<td>18</td>
<td>26</td>
<td>8</td>
<td>12</td>
<td>3</td>
<td>11</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>½</td>
<td>5</td>
<td>5</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
<tr>
<td>2×1½×8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
<tr>
<td>3×2×8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
<tr>
<td>3×3×8</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
<tr>
<td>4×3×8</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
<tr>
<td>5×4×8</td>
<td>5</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
<tr>
<td>2×1½×10</td>
<td>1½</td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>26</td>
<td>8</td>
<td>12</td>
<td>3</td>
<td>11</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
<tr>
<td>3×2×10</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>18</td>
<td>26</td>
<td>8</td>
<td>12</td>
<td>3</td>
<td>11</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
<tr>
<td>4×3×10</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
<tr>
<td>5×4×10</td>
<td>5</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
<tr>
<td>6×5×10</td>
<td>6</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
<tr>
<td>6×6×10</td>
<td>6</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
<tr>
<td>2×1½×12</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>26</td>
<td>9</td>
<td>12</td>
<td>3</td>
<td>13</td>
<td>12</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>16</td>
<td>13</td>
<td>15</td>
<td>7½</td>
</tr>
</tbody>
</table>

(1) ALL FLANGES ARE 125# ANSI
(2) DIMENSIONS VARY DUE TO THREADED FITTINGS

MOTOR DATA

<table>
<thead>
<tr>
<th>FRAME</th>
<th>P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 C</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>143 TC-145 TC</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>182 TC-184 TC</td>
<td>132</td>
<td>9</td>
</tr>
<tr>
<td>213 TC-215 TC</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>254 TC-256 TC</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>284 TC-286 TC</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>324 TSC-326 TSC</td>
<td>26</td>
<td>12</td>
</tr>
</tbody>
</table>

(1) OBSOLETE

Not for construction unless certified, some dimensions may vary ±1/2”. Pump Construction:

CUSTOMER _______________________________ CUSTOMER NO. _______________________________
PROJECT _______________________________ SERIAL NO. _______________________________
ENGINEER _______________________________ LOCATION _______________________________
CONTRACTOR _______________________________ LOCATION _______________________________
PUMP Model Size Curve No. GPM Head SP. GR.@Temp. _______________________________
MOTOR Mfgr. HP RPM Volt-Phase-Cycle Frame ENC. Furnished by Mounted by _______________________________
Shop Order _______________________________ Certified by _______________________________ Date _______________________________
629 - TCD Process Pump
"C" Face Motor w/Discharge Pipe

PUMP COMPANY
Dimensions

PUMP DATA

MOTOR DATA

CUSTOMER

PROJECT

ENGINEER

CONTRACTOR

PUMP DATA

MOTOR DATA

Not for construction unless certified, some dimensions may vary ± 1/2". Pump Construction:

Customer

Customer No.

Project

Serial No.

Engineer

Location

Contractor

Pump Model

Size

Curve No.

GPM

Head

Sp. Gr.@Temp.

Pump Length

Pump Plate

Motor Mfr.

HP

RPM

Volt-Phase-Cycle

Frame ENC.

Furnished by

Mounted by

Shop Order

Certified by

Date

56 C 12% 18%
143 TC 12% 18%
145 TC 12% 18%
162-184 TC 13% 20%
213 TC 15% 20%
215 TC 17 20%
254 TC 20% 20%
258 TC 21% 20%
284 TC 22% 21%
286 TC 23% 21%
324 TC 24% 21%
326 TC 26% 21%
364 TC 26% 22%
365 TC 27% 22%

Date: Sept. 1, 1984

PAGE 629-2
PUMP DATA

<table>
<thead>
<tr>
<th>SIZE</th>
<th>3x2x12</th>
<th>4x3x12</th>
<th>6x4x12</th>
<th>8x6x12</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>10 1/2</td>
<td>10 1/2</td>
<td>11 1/2</td>
<td>12</td>
</tr>
<tr>
<td>AS</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>24</td>
<td>24</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>D</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>E₁</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>E₂</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>EE</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>L</td>
<td>15</td>
<td>17 1/2</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>M</td>
<td>3 1/2</td>
<td>5</td>
<td>5 1/2</td>
<td>6</td>
</tr>
<tr>
<td>N</td>
<td>9 1/2</td>
<td>10</td>
<td>11</td>
<td>14 1/2</td>
</tr>
<tr>
<td>O₁</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>O₂</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>V</td>
<td>17 1/2</td>
<td>17 1/2</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>VS</td>
<td>17 1/2</td>
<td>17 1/2</td>
<td>18 1/2</td>
<td>20</td>
</tr>
</tbody>
</table>

Dimensions:

Not for construction unless certified, some dimensions may vary ±1/2". Pump Construction:

CUSTOMER__CUSTOMER NO._____________________
PROJECT__SERIAL NO.________________________
ENGINEER___LOCATION_________________________
CONTRACTOR__
PUMP Model Size Curve No. GPM Head SP. GR.@Temp. Pump Length Plate
DATA ______ _________ ___________ _____ _____ _________________ ___________ ______
MOTOR Mfgr. HP RPM Volt-Phase-Cycle Frame ENC. Furnished by Mounted by
DATA ___________ _____ ______ __________________ _____ _____ ____________ ________ ______
Shop Order_____________________Certified by_____________________Date______________________
Intentionally Left Blank